Spray Flame and Exhaust Jet Characteristics of a Pressurized Swirl Combustor
نویسندگان
چکیده
Title of Document: SPRAY FLAME AND EXHAUST JET CHARACTERISTICS OF A PRESSURIZED SWIRL COMBUSTOR Martin Brendan Linck, Doctor of Philosophy, 2006 Directed By: Professor Ashwani K. Gupta Department of Mechanical Engineering This work describes an investigation of swirl-stabilized flames, created in a combustor featuring co-annular swirling airflows, under unenclosed, enclosed, and submerged conditions. A centrally-located fuel nozzle, which uses air-assist atomization, creates a methanol fuel spray. This approach provides great control over fuel spray properties in a compact geometry. Factors affecting the structure of the flames, including the effect of the central atomization air jet, are investigated using three-dimensional particle image velocimetry, direct imaging, and phase-Doppler particle analysis techniques. Exhaust jet temperatures are measured. The dynamic events affecting twophase exhaust jets from the combustor under submerged conditions are examined using high-speed cinematography and sound spectrum analysis. It is found that the structures of the flames examined, which feature low overall equivalence ratios, are closely linked to the features of the air flowfield in the combustor. Swirl numbers of flows emerging from twisted-vane swirl assemblies are characterized. The structure of the flow is affected by the swirl configuration, but does not depend heavily on the Reynolds number. The central atomization air jet (with or without fuel) reshapes the recirculation region in the swirling flow and has a significant, controllable effect on the structure of the airflow and flame. The effect is the same for nonreacting and reacting flows. In one unique case, the central atomization air interacts with the swirling flow to create two recirculation regions and a lifted flame. The lifted flame is more compact than similar non-lifted flames. The twin-fluid atomization approach is shown to provide effective atomization over a wide range of operating conditions. The two-phase interaction of the exhaust jet is found to depend on the pressure drop over the exhaust nozzle. The dynamic behavior of the exhaust jet is buoyancy-driven at low pressure drops, and is affected by complex instability mechanisms at high pressure drops. Strouhal numbers of large-scale unstable events occurring in the two-phase flow are two orders of magnitude smaller than those associated with instabilities in single-phase flows. Evidence is presented, indicating that acoustic pressure waves in the exhaust jet may be involved in the generation of bubbles surrounding exhaust jets at high pressure drops. SPRAY FLAME AND EXHAUST JET CHARACTERISTICS OF A PRESSURIZED SWIRL COMBUSTOR
منابع مشابه
On the Dependence of Soot Formation and Combustion on Swirling Combustion Furnaces: Measurement and Simulation
Soot concentration distribution is investigated both numerically and experimentally in methane-air diffusion flame. The experimental work is conducted with a cylindrical swirl stabilized combustor. Filter paper technique is used to measure soot volume fraction inside the combustor. The numerical simulation is based on the solution of the fully-coupled conservation equations for swirling turbule...
متن کاملIgnition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust
A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of t...
متن کاملSimultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames.
Simultaneous planar laser-induced incandescence, hydroxyl radical planar laser-induced fluorescence, and droplet Mie scattering are used to study the instantaneous flame structure and soot formation process in an atmospheric pressure, swirl-stabilized, liquid-fueled, model gas-turbine combustor. Optimal excitation and detection schemes to maximize single-shot signals and avoid interferences fro...
متن کاملSpray Combustion Characteristics of Palm Biodiesel
The potential of Palm Methyl Esters (PME) as an alternative fuel for gas turbines is investigated using a swirl burner. The main air flow is preheated to 623 K and a swirling spray flame is established at atmospheric pressure. The spray combustion characteristics of PME are compared to diesel and Jet-A1 fuel under the same burner power output of 6 kW. Investigation of the fuel atomizing charact...
متن کاملLarge eddy simulation of propane combustion in a planar trapped vortex combustor
Propane combustion in a trapped vortex combustor (TVC) is characterized via large eddy simulation coupled with filtered mass density function. A computational algorithm based on high order finite difference (FD) schemes, is employed to solve the Eulerian filtered compressible Navier-Stokes equations. In contrast, a Lagrangian Monte-Carlo solver based on the filtered mass density function is inv...
متن کامل